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Abstract

Despite substantial progress, there are still several gaps in our knowledge about the process of sex chromosome
differentiation. The degeneration of sex-specific chromosome in some species is well documented, but it is not
clear if all species follow the same evolutionary pathway. The accumulation of repetitive DNA sequences, however,
is a common feature. To better understand this involvement, fish species emerge as excellent models because they
exhibit a wide variety of sex chromosome and sex determining systems. Besides, they have much younger sex
chromosomes compared to higher vertebrates, making it possible to follow early steps of differentiation. Here, we
analyzed the arrangement of 9 repetitive DNA sequences in the W chromosomes of 2 fish species, namely Leporinus
reinhardti and Triportheus auritus, which present well-differentiated ZZ/ZW sex system, but differ in respect to the
size of the sex-specific chromosome. Both W chromosomes are almost fully heterochromatic, with accumulation of
repeated DNAs in their heterochromatic regions. We found that microsatellites have strongly accumulated on the
large W chromosome of L. reinhardti but not on the reduced-size W chromosome of T. auritus and are therefore
important players of the W chromosome expansion. The present data highlight that the evolution of the sex
chromosomes can diverge even in the same type of sex system, with and without the degeneration of the specific-sex
chromosome, being more dynamic than traditionally appreciated.
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Background
Sex chromosomes and their differentiation are among
the most interesting topics in evolutionary genetics.
However, although evolutionary processes shaping sex
chromosomes are still not completely understood the
cessation or the partial restriction of recombination
within the sex chromosome pair is always observed. Data
from phylogenetically distinct organisms show that this
phenomenon is frequently associated with the accumula-
tion of repetitive DNAs in the sex chromosomes [1-8],
indicating that this feature is an inherent property of sex
chromosome differentiation. Repetitive DNA sequences
constitute the major fraction of eukaryote genomes and
include the tandem repeats (satellites, minisatellites, and
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microsatellites) and dispersed elements (transposons and
retrotransposons) [9,10]. Repetitive DNA plays an im-
portant role on the structural and functional
organization of genomes [11,12].
Sex chromosomes of birds (ZZ/ZW) and mammals

(XX/XY) are highly differentiated, resulting from a long
evolutionary process. It is estimated, for example, that
the mammalian Y chromosome has been differentiated
more than 150 million years [13]. In turn, sex chromo-
somes of amphibian and fish have a more recent origin,
with less than 10 million years in some species [14]. This
makes fish, the oldest vertebrate group, a good model for
analyzing the evolution of sex chromosomes in verte-
brates, since this issue can be followed from the absence
of sex chromosomes to the different steps of their differ-
entiation, improving the understanding of the association
of repetitive DNA with this event.
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Among the most differentiated sex chromosomes in
fishes are the ZW ones. Leporinus (Anostomidae, Chara-
ciformes) represents a frequently investigated genus that
shows a conserved chromosome number (2n = 54) with a
conspicuous ZW sex chromosome system shared by sev-
eral species. The typical W chromosome is always the
largest one in the karyotype, almost fully heterochro-
matic and much bigger than the Z chromosome, repre-
senting a model of well-differentiated ZW sex systems
without degeneration of the sex-specific chromosome
[15-20]. On the other hand, Triportheus (Characidae,
Characiformes) is also a well investigated genus, in which
all species present 2n = 52 chromosomes and a ZW sex
chromosome system The size of W chromosome in Tri-
portheus is reduced compared to the Z chromosome,
representing a distinct model of a well-differentiated ZW
system with degeneration of the sex-specific chromo-
some [21-24].
In this study, we compared the degree of repetitive

DNAs accumulation on the differentiated W chromo-
somes in two ZW-fish models - Leporinus and Tri-
portheus. We found that microsatellites have strongly
accumulated on the large W chromosome of L. rein-
hardti but not on reduced-size W chromosome of T.
auritus and are therefore important players of the W
chromosome expansion.

Results
Leporinus reinhardti has a karyotype structure composed
of 2n = 54 m-sm chromosomes, with the exception of the
W chromosome, while T. auritus has 2n = 52 chromo-
somes comprising m, sm, st and a pairs (Figure 1). Both
species presented a distinct heteromorphic ZZ/ZW sex
system. In L. reinhardti, the sex specific W chromosome
is the largest one in the complement and the unique
Figure 1 Giemsa-stained female karyotypes of Leporinus reinhardti (2n
chromosome system. The chromosomes of both species were arranged i
in boxes for the sake of clarity. Bar = 5 μm.
classified as st, allowing it to be easily distinguished from
the other chromosomes of the karyotype. On the other
hand, in T. auritus the Z chromosome is the largest m in
the karyotype, while the W is also m, but smaller than
the Z (Figure 1). The W chromosomes of both species
showed a more highly distinct pattern than the Z
chromosome and all autosomal pairs concerning the
microsatellite repeats distribution (Figures 2, 3). They
are also widely heterochromatic, showing extensive
regions of C-positive heterochromatin (Figure 4).
The W chromosome of L. reinhardti differ significantly

by the strong accumulation of most microsatellite
repeats, mainly on its long arm, contrasting with the pat-
tern generally found for the autosomes (Figures 2, 4).
Microsatellites (A)30, (C)30, (CA)15, (GC)15, (TA)15,
(CAT)10, (CAG)10 showed high accumulation on the W
chromosome, with the majority of signals being accumu-
lated on its long arm. While the microsatellites (A)30,
(CA)15 and (GC)15 were also accumulated on the hetero-
chromatic subtelomeric regions of several autosomes,
the (TA)15, (CAT)10, (CAG)10 signals outside the W
chromosome were absent or only minor. On the other
hand, microsatellite (C)30 was uniformly spread along all
other chromosomes. Microsatellite (GA)15 represented
an exception, exhibiting no accumulation on the W
chromosome and being found only in telomeres. The
18S rDNA site was restricted to the terminal region of
only one autosomal pair (Figure 2).
In T. auritus, the microsatellites were also present on

the W chromosome, although in a lesser amount com-
pared to L. reinhardti (Figures 3, 4). The slight accumu-
lation on the W chromosome exhibited only (C)30. The
microsatellites (A)30, (GA)15, (GC)15 and (CAG)10 were
present only in subtelomeric heterochromatin. Microsat-
ellite (CAG)10 was strongly accumulated on one
=54) and Triportheus auritus (2n = 52), both with a ZZ/ZW sex
n descending order of size and the sex chromosomes were highlighted



Figure 2 Mitotic metaphase chromosomes of Leporinus reinhardti female, with a ZZ/ZW sex chromosome system hybridized with
different repeated DNAs, including mono-, di- and trinucleotide microsatellites and an 18S rDNA gene as probes. Letters mark the W
chromosomes. Bar = 5 μm.
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autosome pair. While the Z chromosome lacks 18S
rDNA FISH signals, 18S rDNA sites were present on
two autosomal pairs and on the W chromosome of T.
auritus, where a strong accumulation of this sequence
was found throughout its terminal heterochromatic re-
gion (Figure 3).

Discussion
We studied the pattern of repeated DNAs distribution in
the evolution of sex chromosomes in two fish species
with ZW sex chromosome systems. In both species, the
repetitive DNA has accumulated in the heterochromatic
regions indicating that heterochromatinization has
driven the divergence of Z and W chromosomes. We
demonstrated a stronger microsatellite accumulation on
the large W chromosome of L. reinhardti and only weak
accumulation on the smaller W chromosome of T.
auritus.
In L. reinhardti, a substantial accumulation of several

microsatellite repeats on the W chromosome contribu-
ted to its enlargement in comparison to the Z chromo-
some (Figures 2, 4). The accumulation of various types
of repetitive DNA sequences on the W chromosome of
other Leporinus species has also been documented
[25,26]. Specifically in L. elongatus, a satellite DNA fam-
ily named L6 was specific to the W chromosome [25],
and a second one, LeSpe I, was a sex-specific dispersed
repetitive element showing distinct distribution patterns
on two exclusive female chromosomes, named W1 and
W2. Therefore, it was suggested that instead of ZW sex
chromosomes, L. elongatus may have a multiple
Z1Z1Z2Z2 /Z1Z2W1W2 sex chromosome system [26].
Among Triportheus species, Z chromosome is con-

served corresponding to the biggest one in the karyotype,
while the W chromosome varies greatly between species
concerning its size, morphology, and amounts of hetero-
chromatin [24]. In T. auritus, in which the W chromo-
some is smaller than the Z chromosome, the
accumulation of microsatellites was present only in one
microsatellite class (Figures 3, 4). The unique feature of
Triportheus species W chromosomes is the presence of
18S rDNA at terminal region of the long arm [27]. Few
examples of sex chromosomes bearing rRNA genes are
known in fishes [28-31]. The redundancy of the rDNA



Figure 3 Mitotic metaphase chromosomes of Triportheus auritus female, with a ZZ/ZW sex chromosome system hybridized with
different repeated DNAs, including mono-, di- and trinucleotide microsatellites, and an 18S rRNA gene as probes. Letters mark the W
chromosomes. Bar = 5 μm.
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sequences could make these chromosomal regions more
susceptible to unequal crossing-over. In salmonid fishes,
for example, an important role was suggested for the
rDNA loci on the putative sex chromosomes of this spe-
cies that might have limited the opportunity for add-
itional recombination near a major sex-determining
locus [28]. As the occurrence of 18S rDNA is a common
feature for the W chromosomes in Triportheus species
Figure 4 W chromosomes of Leporinus reinhardti (L) and Triporteus au
sequences. Note the huge accumulation of several classes of microsatellite
auritus.
[27], a possible role for the repetitive DNAs associated
with the rDNA, or even for the proper rDNA multicopy,
in the differentiation of the W chromosome in this fish
group could not be excluded.
In fact, variation in the amount of several types of re-

petitive DNA is associated with the genomic diversity
and sex chromosome evolution of many fish species. For
example, the Neotropical fish Hoplias malabaricus has
ritus (T) after C-banding and FISH with various repetitive DNA
s in L. reinhardti and the lesser amount of this accumulation in T.
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different sex chromosome systems, as well as distinct
evolutionary stages of sex chromosome differentiation
found among its populations. In some populations of this
species, a well-differentiated XX/XY sex chromosome
system can be found in which the X chromosome clearly
differs from the Y by the accumulation of DNA repeats
[30,31]. At least 15 distinct repetitive DNA classes (in-
cluding satellites, TEs, and microsatellites repeats) accu-
mulated in the heterochromatic region of the X
chromosome. Remarkably, in this case the X chromo-
some was the preferred site for the accumulation of the
repeats, representing an unusual example of an X
chromosome accumulating more repetitive DNA than
the Y [31]. Studies conducted in phylogenetically distant
organisms, such as the lizard Eremias velox (ZW system)
and the plant Silene latifolia (XY system) showed exten-
sive accumulation of several microsatellite sequences
over the whole length or parts of the W and Y chromo-
somes, respectively. Accumulation of different microsa-
tellites occurring on independently evolved sex
chromosomes indicates that various repeated DNAs may
follow very different “trajectories” on sex chromosomes
in different lineages [32,33].
How is recombination suppressed? The accumulation of

repetitive DNAs on the sex chromosomes may be both the
cause, as well as the consequence of the recombination
suppression. When the sex chromosomes stop their re-
combination, repetitive sequences are predicted to accu-
mulate rapidly and this phenomenon may precede gene
degeneration. Accumulated repetitive sequences may ex-
plain why the young Y chromosomes found in Drosophila
and in some plants, are often larger than the X chromo-
somes [4,5]. However, the accumulation of repetitive
DNAs on sex chromosomes cannot be taken as direct evi-
dence for degeneration, as the accumulation does not
automatically lead to gene loss. Studies conducted on
some model species can reveal if the process of sex chro-
mosomes evolution is, in fact, more dynamic than trad-
itionally appreciated, helping us understanding how sex
chromosomes become non-recombining, and the evolu-
tionary transition from homologous to heteromorphic sex
chromosomes.

The process of repetitive DNA accumulation probably
represents the earliest events working on evolving sex-
specific chromosomes before genes start to degenerate
[34,35]. In this way, the W chromosome of L. reinhardti
differ from that of T. auritus in the amount of accumu-
lated DNA repeats, making it greater than the Z
chromosome and, consequently, with a not degeneration
in size. In this first species, the microsatellite repeats are
the main class accumulated on the W chromosome,
while in T. auritus such accumulation was no longer so
prominent. Thus, in this latter species, other repeated
DNA families may occupy this niche, representing the
main component of the W chromosome heterochroma-
tin, linked to its clear size reduction. In fact, large fam-
ilies of satellite DNAs can constitute the main
component of the heterochromatin of the sex chromo-
somes, as found in birds and mammals [35-38], or even
among fish, as appears to occur in T. auritus. Thus,
microsatellite repeats seem to play a key role in the sex-
specific chromosome differentiation, suggesting that they
could be an early colonizer of sex chromosomes.

Conclusions
The present data highlight that the evolution of the sex
chromosomes can diverge even in the same type of sex
system. In L. reinhardti and several other species of this
same genus, as well as in the Parodontidae and Prochilo-
dontidae families [39], the W chromosome notably
increased in size compared to the Z chromosome. In
contrast, in T. auritus, as well as in other species of this
same genus or in the Crenuchidae family [39], the W
chromosome behaves similarly as in higher vertebrates,
showing size degeneration/shrinkage.
In both models, it is clear the close relationship be-

tween the differentiation of the W chromosome and its
huge heterochromatinization. However, remains un-
answered if there are cytological limitations involving the
processes of growing or degeneration of the sex chromo-
somes. It’s not clear if the crescent accumulation of re-
petitive sequences in young sex chromosomes is
necessarily followed by degeneration as commonly
observed in higher vertebrates. In this sense, the accu-
mulation or loss of repetitive sequences might have
implications more than only quantitative. Could the des-
tiny of the sex-specific chromosome follow alternative
patterns, i.e. not necessarily being degenerated in size as
commonly found in some groups? This question, how-
ever, only time and the evolution will tell us.

Methods
Specimens, mitotic chromosome preparation,
chromosome staining, and karyotyping
Twelve females of L. reinhardti and fifteen females of T.
auritus were collected from the São Francisco River
(Minas Gerais State, Brazil) and Rio Negro River
(Amazonas State, Brazil), respectively. Mitotic chromo-
somes were obtained from cell suspensions of the anter-
ior kidney using the conventional air-drying method
[40]. The experiments followed ethical protocols and
anesthesia was administered prior to sacrificing the ani-
mals, according to the instructions of the local Ethical
Committee. Chromosomes were sequentially Giemsa
stained and C-banded using barium hydroxide [41] to
detect the C-positive heterochromatin. Images were cap-
tured by an Olympus DP71 digital camera system
(Olympus Corporation, Ishikawa, Japan) using the



Cioffi et al. Molecular Cytogenetics 2012, 5:28 Page 6 of 7
http://www.molecularcytogenetics.org/content/5/1/28
CoolSNAP system software, Image Pro Plus, 4.1 (Media
Cybernetics, Silver Spring, MD, USA), coupled to an
Olympus BX50 microscope (Olympus Corporation, Ishi-
kawa, Japan). The chromosomes were classified as meta-
centric (m), submetacentric (sm), subtelocentric (st) or
acrocentric (a) according to the arm ratios [42], and
arranged in decreasing order of size in the karyotype.

Fluorescence in situ hybridization of repetitive DNAs on
mitotic spreads
Nine repetitive DNA sequences were used as probes, in-
cluding an 18S rDNA gene and eight microsatellite
repeats. The 18S rDNA probe corresponded to a
1400 bp-segment of the 18S rRNA gene, obtained via
PCR from nuclear DNA, previously cloned into plasmid
vectors and propagated in Escherichia coli DH5α [43].
This probe was labeled with digoxigenin-11-dUTP by nick
translation, following the manufacturer’s instructions (Bio-
nick Labeling System, Invitrogen). Fluorescence in situ
hybridization (FISH) was performed according to [44] and
the detection of the 18S rDNA hybridization signals were
performed using anti-digoxigenin-fluorescein (Roche,
Mannheim, Germany). FISH experiments with the micro-
satellite probes were performed as described in [32], with
slight modifications. We used the following labeled oligo-
nucleotides as probes: d(A)30, d(C)30, d(CA)15, d(GA)15, d
(GC)15, d(TA)15, d(CAT)10, d(CAG)10. These sequences
were directly labeled with Cy3 at 5´ terminal during syn-
thesis by Sigma (St. Louis, MO, USA). The chromosomes
were counterstained with DAPI (1.2 μg/ml), mounted in
antifade solution (Vector, Burlingame, CA, USA), and ana-
lyzed in an epifluorescence microscope Olympus BX50
(Olympus Corporation, Ishikawa, Japan).
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