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emphasis of their distribution in the neo-Y
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Abstract

Despite the theoretical and experimental progress, our understanding on sex chromosome differentiation is still
diagrammatic. The accumulation of repetitive DNA sequences is believed to occur in early stages of such
differentiation. As fish species present a wide range of sex chromosome systems they are excellent models to
examine the differentiation of these chromosomes. In the present study, the chromosomal distribution of 9 mono-,
di- and tri-nucleotide microsatellites were analyzed using fluorescence in situ hybrization (FISH) in rock bream fish
(Oplegnathus fasciatus), which is characterized by an X1X2Y sex chromosome system. Generally, the males and
females exhibited the same autosomal pattern of distribution for a specific microsatellite probe. The male specific Y
chromosome displays a specific amount of distinct microsatellites repeats along both arms. However, the
accumulation of these repetitive sequences was not accompanied by a huge heterochromatinization process. The
present data provide new insights into the chromosomal constitution of the multiple sex chromosomes and allow
further investigations on the true role of the microsatellite repeats in the differentiation process of this sex system.
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Background
The origin and evolution of sex chromosomes are among
the most interesting topics in evolutionary genetics. Al-
though sex chromosomes evolve from a homologue pair of
autosomes, over time they become different, both from
each other and the autosomes, in gene content and struc-
ture [1,2]. The processes working on sex chromosome dif-
ferentiation are still not completely understood. However,
the accumulation of repetitive DNA sequences is one of the
first probable steps in the early stages of such differentiation
[2-4]. Repetitive sequences, which can account for more
than 50% of the genome, constitute the substantial portion
of eukaryotic genomes and include the tandem repeats
(satellites, minisatellites and microsatellites) and dispersed
elements (transposons and retrotransposons) (reviewed in
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[5]). A clear correlation between sex chromosomes and
repetitive DNAs has been evidenced by a number of studies
[4,6-11], suggesting that the differentiation of sex chromo-
somes is frequently associated with the accumulation of
such repetitive sequences. The chromosomal mapping of
repetitive DNAs has provided new insights for understand-
ing genome evolution and was useful to reveal the process
of sex chromosome differentiation in many vertebrate
species.
Teleost fishes are an outstanding model to study the

evolution of sex chromosome since they present a broad
range of sex chromosome systems, as well as the
absence of differentiated sex chromosomes in most
species [12,13]. Besides, they have much younger sex
chromosomes compared to higher vertebrates, such as
mammals and birds, making it possible to analyze the
early stage of their differentiation [2,14,15]. Particularly,
repeated DNA sequences have been applied to clarify
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the potential role of these sequences in the differenti-
ation of fish chromosomes (reviewed in [16]).
The rock bream (Oplegnathus fasciatus) belongs to the

Oplegnathidae family and is one of the most economic-
ally important marine fish in East Asia [17]. Conven-
tional cytogenetic analysis of this species showed that
the male karyotype is composed of 2n = 47 chromo-
somes (3 m + 44a), while the female karyotype is
composed of 2n = 48 chromosomes (2 m + 46a). This
species is characterized by having a multiple X1X1X2X2/
X1X2Y sex chromosome system [18,19]. To further
understanding of sex chromosome differentiation in
Oplegnathus fasciatus, we mapped the chromosomal
distribution of different classes of microsatellite repeats
in the genome of Oplegnathus fasciatus, focusing on
their distribution within the sex chromosomes.
Results
Karyotyping
Oplegnathus fasciatus showed 2n = 48 chromosomes
(46a + 2 m) in the female and 2n = 47 chromosomes
(44a + 3 m) in the male specimens. This specific sex
karyotype is determined by the characteristic multiple
sex chromosome system, with X1X1X2X2 chromosomes
in the females and X1X2Y chromosomes in the males,
where the Y chromosome corresponds to a metacentric
one, easily recognized by its larger size compared to the
other chromosomes. Differently, the X1 and X2 chromo-
somes are acrocentrics and not easily identifiable. Thus,
both chromosomes were tentatively located as the 14th
and 22nd pairs in the karyotype, respectively (Figure 1).
Figure 1 Giemsa-stained male (above) and female (below)
karyotypes of Oplegnathus fasciatus, highlighting the presence
of an unusual X1X2Y sex chromosome system. Bar = 5 μm.
Chromosomal mapping of the microsatellite repeats
In general, the same distribution pattern was found
between males and females when looking at the
mapping of a specific microsatellite probe in the
autosomes. A discrete banding pattern was observed for
some microsatellites, whereas others were more widely
dispersed along the chromosomes. However, the Y
chromosome demonstrated a remarkable and specific
accumulation of several microsatellites.
The microsatellites d(CA)15, d(GA)15, d(CAT)10 and d

(GAG)10, provided preferential banding pattern in the
subtelomeric region along most chromosome arms, with
some signals appearing stronger and more extended
than the others. The microsatellites d(GC)15 and d
(CAA)10 provided strong dispersed signals across the en-
tire length of most chromosomes, highlighting their
widespread presence in the genome of Oplegnathus
fasciatus. In addition, d(A)30 d(CAG)10 and d(CGG)10
produced also a scattered, but more discrete distribution
in the chromosomes (Figure 2).
The specific male Y chromosome is easily character-

ized by a strong concentration of some microsatellite
repeats. Particularly the microsatellites d(GC)15 and d
(CAA)10 are highly distributed in the Y chromosome,
being practically accumulated along its entire length. A
stronger, but less concentrated distribution, was also
observed for microsatellites d(A)30 and d(CAG)10,
while the microsatellites d(CA)15, d(CGG)10, d(GA)15,
d(CAT)10 and (dGAG)10 were preferentially clustered
on specific regions of the chromosome. Figure 3 high-
lights the overall distribution of all microsatellites on the
Y chromosome.

Discussion
Chromosomal distribution of microsatellites on
autosomes
Our results were able to evidence that the distribution
of the microsatellites in the chromosomes of the rock
bream fish differs among the distinct repeats analyzed.
Indeed, a strong accumulation occurs for some of them,
as is the case of the d(GC)15 and d(CAA)10 repeats,
while others have a distinct and more discrete distribu-
tion pattern. Thus, the genome of the rock bream shows
a clear differential accumulation of microsatellites along
its evolutionary time. Similarly, some of these micro-
satellites were also found to be clustered in other fish
species, such as in the Silurformes Imparfinis schubarti
(Heptapteridae), Steindachneridion scripta (Pimelodidae)
and Rineloricaria latirostris (Loricariidae), which exhibit
a remarkable accumulation of both (GA)15 and (A)30
microsatellites in the telomeric regions of their chromo-
somes [20]. In two karyomorphs of Hoplias malabaricus
‘species complex’, one of them displaying an XY sex
chromosome system and the other one an X1X2Y



Figure 2 Mitotic metaphase chromosomes of Oplegnathus fasciatus males with an X1X2Y sex chromosome system, hybridized with
different labeled microsatellite-containing oligonucleotides. Chromosomes were counterstained with DAPI (blue) and microsatellites probes
were directly labeled with Cy3 during synthesis (red signals). Letters mark the Y chromosomes. Bar = 5 μm.
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multiple system, the (GA)15 and (CA)15 repeats are pref-
erentially located in the subtelomeric regions [21]. This
preferential accumulation in particular locations may in-
dicate chromosomal regions where microsatellites are
present as very large perfect or degenerate arrays [4].
However, it is known that microsatellite repeats can also
exhibit wide diversity with respect to chromosomal loca-
tion and distribution [16]. For example, the micro-
satellites d(GC)15 and d(CAA)10, which provided the
strongest dispersed signals across the entire length of
most chromosomes in rock bream, were found to have a
subtelomeric location in H. malabaricus [21]. As a
whole, these data demonstrate the dynamism in respect
to the accumulation and distribution of repetitive DNAs
on fish genomes.
Patterns of microsatellite distribution on Y chromosome
Multiple sex chromosomes in fishes usually arise from
centric or tandem fusions between ancestral sex chro-
mosomes [15,22], and repetitive DNA sequences have
proven to be useful markers of these processes. This is
the case for d(GAG)10 repeats in the present study.
Indeed, this microsatellite showed a general location in
the telomeric region of the chromosomes (Figure 2). In
addition, this same microsatellite provided a clear
banding pattern not only in the telomeric regions of the
Y chromosome, but also on its centromeric region.
Whereas this chromosome was originated from a centric
fusion that merged the ancestral homologues of the X1

and X2 chromosomes, this centromeric site is a clear in-
dicator of that chromosomal rearrangement.



Figure 3 Y chromosomes of Oplegnathus fasciatus, highlighting the patterns of distribution for microsatellites, derived from FISH data.
Note the huge distribution of some classes of microsatellites on this chromosome.

Figure 4 Map of sampling locations of rock bream along the
coasts of Zhoushan, (China). Fish were collected at Putuo (n = 14)
and Shengsi (n = 16). A more detailed geographic definition of the
gray areas is highlighted in box.
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On the other hand, other microsatellites have a wide
distribution along the Y chromosome, particularly the d
(GC)15 and d(CAA)10, and even the d(A)30 d(CAG)10
ones. The accumulation of repetitive DNA sequences
was likely to play an important role in the differentiation
process of sex chromosomes, especially XY and ZW sex
systems [16]. Suppression of recombination is a pre-
requisite for stable genetically determined sex systems,
and thus the massive accumulation of repetitive se-
quences, including microsatellites, usually occurs in
non-recombining regions [2]. In simple sex systems, the
repetitive DNAs usually accumulate in the heterochro-
matic regions, thereby forming heterochromatic block
which could drive the divergence of sex chromosomes
[2,23,24].
Although the association of repetitive DNA sequences

with the differentiation of multiple sex chromosome
systems has also been testified, there is no significant
increase of heterochromation in such multiple sex chro-
mosomes. For example, in H. malabaricus as well as
E. erythrinus, the multiple sex chromosomes do not dis-
play a great amount of heterochromatin [15,25]. Further-
more, the heterochromatin that is present in the sex
chromosomes is ‘pre-existing’, with no significant in-
crease on its amount after the differentiation of the
multiple systems. These evidences indicated that the dif-
ferentiation of multiple sex system is achieved through
chromosomal rearrangements that occurred during their
own origin [21]. Thus, chromosomal rearrangements
may create new linkage groups between genes that were
originally found in different chromosomes, including
sexually antagonistic ones. This may lead to reduced
or suppressed recombination in regions close to the
breakpoints in the heterozygote [26]. Concerning O.
fasciatus the conspicuous amount of microsatellite re-
peats in the Y chromosome is yet an open question
which deserves further investigation. As we have not at
this moment a clear identification of the X1 and X2

chromosomes in the karyotype, it is not clear if these
repeats were already present in the ancestral chromo-
somes or if they have been accumulated after the fusion
process originating the neo-Y chromosome. In the latter
case, we would have a clear example of a huge accumu-
lation of repetitive DNAs on the sex specific chromo-
some and this would be an interesting novelty relative to
a multiple sex chromosome system, keeping also in
mind that our previous C-banding data showed that no
huge heterochromatic content is presented in the Y
chromosomes of O. fasciatus [18,19].

Conclusions
In summary, O. fasciatus has a characteristic X1X2Y sex
chromosome system in which the large metacentric Y
chromosome displays a specific amount of distinct
microsatellites repeats along both arms. In addition,
several autosomes also show a conspicuous distribution
pattern of these DNA repeats, showing that several clas-
ses of repetitive DNA sequences have an important role
in the genome differentiation of this species, including
the sex chromosomes. However, the accumulation of
these repetitive sequences was not accompanied by a
huge heterochromatinization process. At the moment,
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the present data provide new insights into the chromo-
somal constitution of multiple sex chromosomes and
allow further investigations on the true role of the
microsatellite repeats in the differentiation process of
this sex system.

Methods
Specimens, mitotic chromosome preparation,
chromosome staining and karyotyping
A total of 30 adult fish (18 females and 12 males), with
easily recognizable tests or ovaries, were collected from
the coast of Zhoushan (Zhejiang Province) (Figure 4).
Mitotic chromosome preparations were obtained by the
air-drying method. The specimens were injected with
0.05% colchicine for 3 hours. The kidney tissue was
collected and placed in hypotonic 0.075 mol/l KCl
solution for 30 minutes, to obtaining a cell suspension.
The cells were fixed in Carnoy’s solution (methanol:
acetic acid, 3: 1, v/v). Afterwards, the cells were dropped
on cooled clean glass slides, air-dried and stained with
15% Giemsa solution diluted with phosphate buffer
(pH 6.8).

Fluorescence in situ hybridization on mitotic spreads
Fluorescence in situ hybridization experiments were
performed as described in [4] with slight modifications.
We used the following labeled oligonucleotides as
probes: d(A)30, d(CA)15, d(GA)15, d(GC)15, d(CAA)10, d
(CAG)10, d(CAT)10, d(GAG)10 and d(CGG)10. These
sequences were directly labeled with Cy3 at 50 terminal
during synthesis by Sigma (St. Louis, MO, USA). The
chromosomes were counterstained with DAPI (1.2 μg/
ml), mounted in antifade solution (Vector, Burlingame,
CA, USA), and analyzed in an epifluorescence micro-
scope Olympus BX50 (Olympus Corporation, Ishikawa,
Japan).
Approximately 30 metaphase spreads were analyzed

per specimen to determine the diploid chromosome
number and karyotype structure. The chromosomes
were classified as metacentric (m) or acrocentric (a)
according to arm ratios [27].
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