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Abstract

Background: Pregnancy complications could lead to maternal and fetal morbidity and mortality. Early diagnosing
and managing complications have been associated with good outcomes. The placenta was an important organ for
development of pregnancy complications. Thus, non-invasive prenatal testing technologies could detect genetic
variations, such as aneuploidies and sub-chromosomal copy number variations, reflecting defective placenta by
maternal plasma cffDNAs. Maternal cffDNAs had been proved to derive from trophoblast cells of placenta.

Results: In order to find out the relationship between genetic variations and pregnancy complications, we
reviewed NIPT results for subchromosomal copy number variations in a cohort of 3890 pregnancies without
complications and 441 pregnancies with pregnancy complications including gestational diabetes mellitus (GDM),
pregnancy-induced hypertension (PIH), preterm prelabor rupture of membranes (PPROM) and placenta implantation
abnormalities (PIA). For GDMs, we identified three CNV regions containing some members of alpha- and beta-
defensins, such as DEFA1, DEFA3, DEFB1. For PIHs, we found three duplication and one deletion region including
Pcdhα, Pcdhβ, and Pcdhγ, known as protocadherins, which were complicated by hypertensive disorders. For
PPROMs and PIAs, we identified one and two CNV regions, respectively. SFTPA2, SFTPD and SFTPA1, belonging to
surfactant protein, was considered to moderated the inflammatory activation within the fetal extra-embryonic
compartment, associated to duration of preterm prelabor rupture of fetal membranes, while MEF2C and TM6SF1
could be involved in trophoblast invasion and differentiation.

Conclusions: Our findings gave a clue to correlation between genetic variations of maternal cell-free DNAs and
pregnancy complications.

Keywords: Noninvasive prenatal testing (NIPT), Copy number variation (CNV), Gestational diabetes mellitus (GDM),
Pregnancy-induced hypertension (PIH), Preterm prelabor rupture of membranes (PPROM), Placenta implantation
abnormalities (PIA)

Background
Pregnancy complications affects maternal and fetal health.
Medical diseases such as hypertension and diabetes during
pregnancy, as well as the poor delivery conditions (pla-
centa accrete and prelabor rupture of membranes) were
common complications in pregnancy [1]. The major

challenges lies in optimizing earlier predictors and identi-
fiers of pregnancy complications. Delays in diagnosing
and managing complications have been associated with
poor outcomes [2]. Shortening the time between the onset
of a complication and the initiation of appropriate man-
agement enables prevention and reduction of maternal
and fetal morbidity and mortality [3]. However, the value
of screening those with pregnancy complications is uncer-
tain because of limitations in knowledge on their contri-
bution to such pregnancy complications and lack of
evidence for effective intervention.
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The placenta is an important organ for human
reproduction. It is shared by both mother and fetus and
is responsible for oxygen and nutrient supply and waste
elimination from the growing fetus [4]. Multi-omic stud-
ies are required to more fully understand the molecular
changes that affect the placenta and associated preg-
nancy. Biofluids have also been analyzed to characterize
differences in the fetoplacental and maternal metabolites
in pregnancies with poor outcomes compared to normal
pregnancies [5]. Defective placentation, particularly fol-
lowing poor trophoblast invasion, predisposes to a con-
tinuum of pregnancy complications in which genetic
and environmental factors may interact to determine the
timing and severity of disease [6].
A rapidly evolving field in prenatal diagnosis is non-in-

vasive prenatal testing (NIPT), also referred to as non-
invasive prenatal screening (NIPS). NIPT is based on the
detection of cell-free fetal DNA in maternal plasma
using next-generation sequencing or other methods for
fetal DNA assessment, mainly used for detection of three
common aneuploidies (13, 18, 21) [7]. However, the
technology is already being refined to detect genome-
wide microdeletion/duplication [8], which have been
identified as a common cause of a number of human
diseases.
Here, we reviewed NIPT results of screening for sub-

chromosomal microdeletions and microduplications
within a cohort of 3890 pregnancies without complica-
tions and 441 pregnancies with pregnancy complica-
tions, including Gestational diabetes mellitus (GDM),
pregnancy-induced hypertension (PIH), preterm prela-
bor rupture of membranes (PPROM) and placenta im-
plantation abnormalities (PIA). Based on NIPT, CNVs
were detected by cff-DNA in maternal plasma, derived
from trophoblast cell of placenta, thus, we could give
some evidences for acossiation existed between CNVs
and risks to develop pregnancy complications.

Results
Subject
From October 2017 to July 2018, there were 3890 preg-
nancies without complications and 441 pregnancies with
one of the four types of pregnancy complications and
were undergoing NIPT. Pregnant women with the four
types of pregnancy complications, including 177 cases
with gestational diabetes mellitus, 28 cases with preg-
nancy-induced hypertension, 173 cases with preterm
prelabor rupture of membranes and 63 cases with pla-
centa implantation (Table 1). All of subjects were under-
going NIPT on gestational age from 12 to 24 weeks,
prenatal diagnosis and delivering in the hospital. The
maternal age for the 441 pregnancies with pregnancy
complications was 29.36 ± 4.15 years old and for the
3890 pregnancies without complications was 29.62 ±

4.28 years old in average. In addition, we identified cases
with chromosomal microdeletions or microduplications.
Overall, we found 1082 (27.81%) cases with chromo-
somal microdeletions or microduplications in pregnan-
cies without pregnancy complications group, while we
found 121 (27.81%) cases with chromosomal microdele-
tions or microduplications in pregnancies with preg-
nancy complications group, including 51 (28.81%) cases
with gestational diabetes mellitus, 5 (17.86%) cases with
pregnancy-induced hypertension, 44 (25.43%) cases with
preterm prelabor rupture of membranes and 11 (17.46%)
cases with placenta implantation.

Gestational diabetes mellitus
Gestational diabetes mellitus (GDM) is defined as glu-
cose intolerance diagnosed during pregnancy [9]. GDM
increases risk of adverse pregnancy outcomes and has
substantial long-term adverse health impacts on both
mothers and their offspring, including a predisposition
to ischemic heart disease, hypertension, obesity, meta-
bolic syndrome and type 2 diabetes mellitus (T2DM) in
later life [10, 11]. Despite years of investigation, very lit-
tle is known about the genetic predisposition for gesta-
tional diabetes mellitus (GDM). Increasing number of
studies have reported pathological changes of placenta
tissues in gestational diabetes mellitus (GDM), while the
underlying mechanisms involved in this process are still
largely uncertain [12, 13]. We herein tried to identify the
genetic variation of placenta involving GDM currencies
by the cell-free DNA in the maternal plasma, which was
proved to be derived from placental trophoblast cells
[14, 15]. As a result, we found three chromosomal re-
gions of p-value < 0.01 were considered as high risks in
currencies of GDM (Fig. 1, Table 2 and Additional file 1:
Table S1). Then, enrichment analysis for 151 genes on
the three regions was performed using DAVID website.
Gene Ontology enrichment showed that defense re-
sponse to bacterium (GO:0042742), innate immune re-
sponse (GO:0045087), killing of cells of other organism
(GO:0031640), antibacterial humoral response (GO:
0019731) and defense response to fungus (GO:0050832)
were the top five significant GO terms in Biological
Process catalog (Additional file 1: Table S2). However,
most of enriched genes were from alpha-defensins and

Table 1 The type of pregnant women with pregnancy
complications

The type of pregnancy complications The number of cases

Preterm Prelabor rupture of membranes 173

Placenta implantation abnormalities 63

Pregnancy-induced hypertension 28

Gestational diabetes mellitus 177

Normal 3890
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beta-defensins families (also see Additional file 1: Table
S2). Alpha-defensins display chemotactic activity and in-
duce proinflammatory cytokines [16]. It can be released
into the extracellular milieu following granulocyte ac-
tivation as a consequence of degranulation, leakage,
cell death, and lysis during inflammation [17]. Mean-
while, in addition to their antibacterial and antiviral
effects, beta-defensins may play roles in the range of
protective, adhesive and regulatory functions [18].
Moreover, several studies [19–23] reported the associ-
ations between the type 1 and 2 diabetes and gene
copy number as well as polymorphism and mRNA
expression on some members of alpha- and beta-

defensins, such as DEFA1, DEFA3, DEFB1, which oc-
curred in our gene list.

Pregnancy-induced hypertension
Hypertension is one of the most common complication
during pregnancy. It contributes significantly to mater-
nal and perinatal morbidity and mortality. Placental in-
sufficiency is believed to be a mechanism of pregnancy-
induced hypertension (PIH) [24]. Placental hypoxia is
believed to result in the release of a variety of placental
factors that have profound effects on blood flow and ar-
terial pressure regulation [25]. Several studies have been
performed to assess the validity of uterine Doppler

Fig. 1 Manhattan plots of 1 Mb-bin on NIPT-CNVs for Gestational diabetes mellitus (GDM). a: duplication region. b: deletion region

Table 2 CNVs and genes associated wiith Gestational diabetes mellitus (GDM), pregnancy-induced hypertension (PIH), preterm
prelabor rupture of membranes (PPROM) and placenta implantation abnormalities (PIA)

Pregnant complicatons dup/del Genome Region Gene Numer

Gestational diabetes dup Chr1:26-29 Mb 67

dup Chr8:1-16 Mb 71

dup ChrX:75-78 Mb 13

Pregnancy-induced hypertension dup Chr3:1-2 Mb 1

dup Chr3:149-151Mb 18

dup Chr11:82-91 Mb 34

dup Chr12:50-73 Mb 284

del Chr5:138-150Mb 157

Premature rupture of membranes del Chr10:80-86 Mb 24

Placenta implantation dup cht5:88-90 Mb 6

del chr15:83-84 Mb 13
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examinations as a screening tool for PIH [26]. We herein
identified three duplication and one deletion of p-value
< 0.01, considered as high risks in currencies of PIH
(Fig. 2, Table 2 and Additional file 1: Table S1). Then,
Gene Ontology enrichment for 494 genes on the four re-
gions showed the top five significant GO terms in Bio-
logical Process catalog were homophilic cell adhesion via
plasma membrane adhesion molecules (GO:0007156),
calcium-dependent cell-cell adhesion via plasma mem-
brane cell adhesion molecules (GO:0016339), nervous
system development (GO:0007399), negative regulation
of serine-type endopeptidase activity (GO:1900004), and
synapse assembly (GO:0007416). (Additional file 1: Table
S3). However, most of enriched genes were from proto-
cadherins (also see Additional file 1: Table S3). Proto-
cadherin have three gene clusters in human, including
Pcdhα, Pcdhβ, and Pcdhγ, located on the 5q31 region of
Chromosome 5 [27]. Some studies were proved that some
members of protocadherins orthologs deficiency could al-
ters development, morphogenesis and transcriptional pro-
file of the placenta in mouse [28, 29]. Protocadherins were
also expressed prominently by developing blood vessels
during angiogenesis [30]. Thus, deficiency protocadherins
could lead placental lesions, which were defined as mater-
nal vascular lesions, were more common in pregnancies
that were complicated by hypertensive disorders [31], al-
though PIH is primarily an impairment of the maternal
circulatory system that is believed to be the result of early

developmental events that lead to inadequate vascular re-
modeling and/or structural abnormalities of maternal ar-
teries [32].

Preterm prelabor rupture of membranes
Preterm prelabor rupture of membranes (PPROM), de-
fined as rupture of the amnion and corium before the
onset of labor, responsible for approximately one-third
of Prelabor births and 3% of all pregnancies [33]. The
most prevalent site of rupture of amniotic membranes in
PPROM is the supra-cervical area (membrane overlying
the ostium of cervical area). The amniotic membrane at
this site is structurally altered and easily disrupted, asso-
ciated with marked swelling and disruption of the colla-
gen network within the compact, fibroblast and spongy
layers [34]. Approximately of PPROM was involved by
microbial invasion of the amniotic cavity [35]. We herein
identified one deletion region of p-value < 0.01, consid-
ered as high risks in currencies of PPROM (Fig. 3, Table
2 and Additional file 1: Table S1). Then, Gene Ontology
enrichment for 24 genes on the region showed the sig-
nificant GO terms in Biological Process catalog were re-
spiratory gaseous exchange (GO:0007585). (Additional
file 1: Table S4) There were three genes locating on this
region, including SFTPA2, SFTPD and SFTPA1. The
proteins encoded by this gene belonging to surfactant
protein, is part of the innate immune response, against
inhaled microorganisms and chemicals, involved in

Fig. 2 Manhattan plots of 1 Mb-bin on NIPT-CNVs for pregnancy-induced hypertension (PIH). a: duplication region. b: deletion region
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surfactant metabolism [36]. Several studies revealed fetal
surfactant proteins (Surfactant protein-A, Surfactant
protein-C and Surfactant protein-D) moderate the in-
flammatory activation within the fetal extra-embryonic
compartment, associated to duration of preterm Prela-
bor rupture of fetal membranes [37–39].

Placenta implantation abnormalities
Placental implantation abnormalities (PIAs), including
placenta previa, placenta accreta, vasa previa, and vela-
mentous cord insertion, can have catastrophic complica-
tions for both the mother and fetus, strongly associated
to preterm delivery resulting in significant perinatal
morbidity and mortality [40]. During the process of im-
plantation, fetal trophoblast cells invade and migrate
into the maternal decidua and destroy the wall of the
maternal spiral arteries, converting them from muscular
vessels into flaccid sinusoidal sacs [41]. Trophoblast dif-
ferentiation along the invasion is fundamental to early
implantation, placental development and establishment
of the fetal-maternal interface. Multiple gene pathways
and heterogeneous cellular interactions have been de-
scribed in directing and controlling trophoblast invasion
[42–44]. We herein identified one deletion region and
one duplication region of p-value < 0.01, considered as
high risks in currencies of PIAs (Fig.4, Table 2, and Add-
itional file 1: Table S1). Then, 19 genes on the regions
were annotated. Although there was not any enrichment

for pathways and gene ontologies, some genes were re-
ported to be involved in trophoblast invasion and differ-
entiation, such as MEF2C [45] and TM6SF1 [46], both
of which were supposed to be the key genes on the du-
plication/deletion region, respectively. MEF2C (myocyte-
specific enhancer factor 2C), activated by Mekk3, was a
transcription factor crucial for early embryonic cardio-
vascular development through the p38 mitogen-activated
protein kinase (Mapk) cascade [47]. Placental expression
of TM6SF1 appears to be upregulated by environmental
exposures such as prenatal alcohol consumption [48].
TM6SF1 (transmembrane 6 superfamily member 1)
could be regulated by DNA methylation, potentially fa-
cilitating protein trafficking via organelle fusion.

Discussion
There are various theories to provide a better under-
standing of the potential mechanisms responsible for the
pathogenesis of pregnancy complications, which include
genetic predisposition, imbalance of immune system,
placenta shallow implantation, vascular endothelium
damage, ischemia and hypoxia of placenta. The out-
comes of most pregnancy complications are unpredict-
able unless they are managed by appropriate health care
providers. Previous studies have identified factors pre-
dicting the care seeking behaviors for pregnancy compli-
cations include higher educational status, near distance
to health facility, availability of transport system, small

Fig. 3 Manhattan plots of 1 Mb-bin on NIPT-CNVs for preterm premature rupture of membranes (PPRM). a: duplication region. b: deletion region
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family size, previous pregnancy experience, and good
economic status, that have been observed with high
probability of skilled assistance seeking for pregnancy
complications [49].
In order to find out the relationship between genetic

variations and pregnancy complications, we used NIPT
to screen a large population in the Chongqing area. This
NIPT technology uses a semiconductor sequencing plat-
form (SSP) to reliably detect CNV in pregnancies carry-
ing high-risk fetuses. Here, we reviewed NIPT results in
the context of screening for subchromosomal microdele-
tions and microduplications within a cohort of 441 preg-
nancies with pregnancy complications and the 3890
pregnancies without complications. To study whether
maternal serum markers tested as a part of screening
additionally help in predicting other pregnancy out-
comes including gestational diabetes mellitus (GDM),
pregnancy-induced hypertension (PIH), preterm Prela-
bor rupture of membranes (PPRM) and placenta im-
plantation abnormalities (PIA).
This study was designed to test the hypothesis whether

a direct correlation exists between sub-chromosomal
microdeletions and microduplications on placenta and
pregnancy complications. We had demonstrated the
feasibility of performing noninvasive prenatal detection
of fetal chromosomal microdeletions and microduplica-
tions on a genome-wide level and at 3Mb resolution [8].
Not all CNVs, however, are disease-causing, while some

CNVs have been identified in apparently normal individ-
uals. Whether a CNV is disease-causing or not depends
on many factors, such as gene content (e.g., a CNV that
is gene-rich is more likely to cause a phenotype than
one containing few or no genes). Therefore, understand-
ing the effects of CNVs on pregnancy complications is
important in clinical medicine. Herein, we identified
which CNVs cause a clinical phenotype versus those that
are part of normal variation. Further, the mechanism
was not well-understood for potential disease-associated
CNVs loci in our study, possibly due to epigenetic modi-
fications, other genetic variants in the vicinity region,
modifier genes and regulatory elements, [50] and poten-
tially also due to allele dosage effects in combination
with alternative allelic copies present within the CNV re-
gions [51].
Placenta is essential for maintenance of pregnancy and

for promoting normal growth and development of fetus.
Placenta formation and function can affect fetal survival,
growth, and development and can modulate maternal im-
mune responses [52]. The inner cell mass of the blastocyst
gives rise to the embryo, while the outer cell layer, the
trophectoderm, gives rise to the placenta. Maternal-fetal
cellular trafficking (MFCT) is the bidirectional passage of
cells between mother and fetus during pregnancy. This re-
sults in the presence of fetal cells in the maternal circula-
tion, known as fetal microchimerism, and maternal cells
in the fetal circulation, known as maternal

Fig. 4 Manhattan plots of 1 Mb-bin on NIPT-CNVs for placenta implantation abnormalities (PIA). a: duplication region. b: deletion region
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microchimerism [15]. The biologic role of this bidirec-
tional passage of cells during pregnancy has been impli-
cated in development of the fetal immune system,
tolerance mechanisms during pregnancy, tissue repair in
autoimmune disease and cancer, and immune surveillance
[53]. Clinical utility of MFCT could be used for prediction
of pregnancy complications. Additionally, this transpla-
cental passage of cells has been implicated in the delicate
balance between immunologic priming and tolerance
which can influence the occurrence of autoimmune dis-
ease and transplantation outcomes [54]. The DNAs de-
rived from placenta could be detected by NIPT
technologies. Both of aneuplodies and CNVs have been
identified. In this study, we reanalyzed the assocications be-
tween NIPT data and clinical complications of pregnancy
and fetus. The results indicated that some CNVs may be
corelated to complications, such as gestational diabetes mel-
litus (GDM), pregnancy-induced hypertension (PIH), pre-
term prelabor rupture of membranes (PPROM) and
placenta implantation abnormalities (PIA). It suggested that
NIPT method would give a clue to investigate the correl-
ation between CNVs and complications.
However, some limitations occurred in this study. Lar-

ger-scale analytical and functional investigations of
CNVs contributing to pregnancy-related complications
are still need to be performed to understand the molecu-
lar and cellular mechanisms underpinning. Moreover,
low read-depth of NIPT and small samples of positive
finding associated with maternal complications were also
weak points in this study. Increasing read-depth of NIPT
could give higher resolutions for CNVs detection [8].
Meanwhile, more positive samples were needed to be
collected for proving the associations and investigating
new findings for maternal complications in future.

Conclusion
It is well established in the literature that abnormal com-
bined and quadruple screen analytes, not explained by
either maternal or fetal factors, are associated with a
multitude of adverse pregnancy outcomes. This would
allow closer monitoring of women identified to be at in-
creased risk and identify candidates for participation in
early intervention trials.

Materials and methods
Patients
From October 2017 to July 2018, 441 pregnant women
with pregnancy complications and 3890 pregnant
women without complications (The First Affiliated Hos-
pital of Chongqing Medical University) opted for NIPT
to avoid fetal T13, T18 and T21 aneuploidies. Complica-
tions inclusion criteria: ① Diagnostic criteria for gesta-
tional hypertension syndrome: systolic pressure 140
mmHg, or diastolic pressure 90 mmHg; ②Gestational

diabetes mellitus (GDM) diagnosis: According to the
WHO recommended standard, 75 g glucose tolerance
test (OGTT) results confirmed (fasting glucose≥5.1
mmol/L), 1 h postprandial blood glucose ≥10.0 mmol/L,
2 h postprandial blood glucose ≥8. 5 L); or random de-
tection of blood glucose ≥11.1 mmol/L, combined with
three more and one less (eat more, drink more water,
urine more, weight loss), was diagnosed as typical dia-
betes clinical manifestations.

NIPT processing
Whole blood samples of 5 to 10mL from pregnant
women were collected in EDTA within 8 h or cell-free
DNA was collected in BCT tubes (Streck Inc.; Omaha,
NE) within 72 h at 4 °C. Afterwards, cfDNA extraction,
library construction, quality control and pooling were
performed according to the JingXin Fetal Chromosome
Aneuploidy (T21, T18, T13) Testing Kits (CFDA registra-
tion permit No. 0153400300). Following the DNA sequen-
cing, 15~20 libraries were pooled and sequenced within ~
200 bp reads using the JingXin BioelectronSeq 4000 Sys-
tem (CFDA registration permit NO. 20153400309), which
is a type of semiconductor sequencer. Sequencing reads
were filtered and aligned to the human reference genome
(hg19). Fetal DNA concentration was calculated as a qual-
ity control using our previously described method [8].
Combined GC-correction and Z-score testing methods
were used to identify fetal autosomal aneuploidies, as de-
scribed previously [55]. Meanwhile, fetal and maternal
chromosome copy number variations (CNVs) were classi-
fied with our modified Stouffer’s Z-score method as de-
scribed previously [8]. In a previous study, a cutoff value
of Z-score > 3 was used to determine whether the ratio of
the chromosomes was increased, and if fetal trisomies 21,
18, and 13 were also present. Here, each chromosome
with an absolute value of the Z- score greater than 3 was
marked as microduplications, while less than − 3 marked
as microdeletion.

Additional file

Additional file 1: Table S2. Enrichment analysis of gene ontology for
CNVs in gestational diabetes mellitus. Table S3. Enrichment analysis of
gene ontology for CNVs in pregnancy-induced hypertension. Table S4.
Enrichment analysis of gene ontology for CNVs in preterm prelabor
rupture of membranes. (XLSX 66 kb)
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