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Cytogenetic and mutational analysis 
and outcome assessment of a cohort of 284 
children with de novo acute myeloid leukemia 
reveal complex karyotype as an adverse risk 
factor for inferior survival
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Abstract 

Background: Acute myeloid leukemia (AML) is rare in children. Although complex karyotype (CK) defined as ≥ 3 
cytogenetic abnormalities is an adverse risk factor in adult AML, its prognostic impact on childhood AML remains to 
be determined.

Results: We studied the prevalence, cytogenetic and mutational features, and outcome impact of CK in a cohort 
of 284 Chinese children with de novo AML. Thirty-four (12.0%) children met the criteria for CK-AML with atypical CK 
being more frequent than typical CK featured with -5/5q-, -7/7q-, and/or 17p aberration. Mutational prevalence was 
low and co-occurrence mutants were uncommon. Children with CK-AML showed shorter overall survival (OS) (5-year 
OS: 26.7 ± 10.6% vs. 37.5 ± 8.6%, p = 0.053) and event-free survival (EFS) (5-year EFS: 26.7 ± 10.6% vs. 38.8 ± 8.6%, 
p = 0.039) compared with those with intermediate-risk genetics. Typical CK tended to correlate with a decreased OS 
than atypical CK (5-year OS: 0 vs. 33 ± 12.7%.; p = 0.084), and CK with ≥ 5 cytogenetic aberrations was associated with 
an inferior survival compared with CK with ≤ 4 aberrations (5-year OS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.040; 5-year 
EFS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.048).

Conclusion: Our results demonstrate CK as an adverse risk factor for reduced survival in childhood AML. Our findings 
shed light on the cytogenetic and mutational profile of childhood CK-AML and would inform refinement of risk strati-
fication in childhood AML to improve outcomes.
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Background
Acute myeloid leukemia (AML) is a group of clonal 
hematopoietic neoplasms that are characterized by aber-
rations in maturation, proliferation, and survival in the 
stem and progenitor cell compartments. Childhood AML 
is a relatively rare disease that accounts for 15%–20% of 
acute leukemias in children. Despite considerable pro-
gress have made in treating children with AML, about 
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30% of patients still experience relapse and do not sur-
vive beyond five years [1, 2]. Identification of additional 
genetic biomarkers predicting prognosis in childhood 
AML is needed to improve outcomes.

Cytogenetic and molecular mutational features play 
an important role in AML risk stratification [3, 4]. Com-
plex karyotype (CK), commonly defined as three or more 
chromosomal aberrations in the absence of the WHO 
recurrent genetic aberrations of t(8;21)(q22;q22), inv(16)
(p13.1q22) /t(16;16) (p13.1;q22); t(15;17)(q22;q12); 
t(9;11)(p22;q23), t(6;9)(p23;q34), inv(3)(q21q26)/t(3;3)
(q21;q26), and t(9;22)(q34;q11.2) [5–8], is considered as 
an adverse risk factor in adult AML, but its prognostic 
impact on childhood AML remains to be determined [5, 
9]. Differences in AML genetic profile between adults 
and children are well documented [10–12], and their 
impact on outcome may differ among age groups [6, 13]. 
There is also evidence to suggest geographic heterogene-
ity of AML cytogenetic and molecular features world-
wide [14–17]. So far, few studies have been focused on 
the cytogenetic and molecular profile of childhood CK-
AML, largely owing to the rarity of AML in children and 
none in a Chinese population [18–20].

Here, we report a study that investigated the preva-
lence, features, and clinical correlation of cytogenetic 
and mutational characteristics of CK-AML in a cohort 
of 284 children with AML. Our study showed CK was 
associated with decreased survival in childhood AML 
and its impact on outcome correlated with the number 
of chromosomal aberrations. These results would aid in 
informing risk stratification of childhood AML to guide 
risk-adapted therapy.

Materials and methods
Patients and samples
A total of 284 patients (≤ 18  years old) with de novo 
AML were enrolled in the study between 2007 and 2018 
at Children’s Hospital of Chongqing Medical Univer-
sity in China. The diagnoses were based on histological, 
cytogenetics, and immunophenotyping analyses of bone 
marrow. The patients were treated with daunorubicin/
cytarabine/etoposide (DAE)-based regimen following the 
protocols of the Pediatric Hematology Group of Chinese 
Medical Association [21]. The study was reviewed and 
approved by the Ethics Committee of Children’s Hospital 
of Chongqing Medical University in accordance with the 
Declaration of Helsinki.

Cytogenetic analysis
G-banded karyotyping and fluorescence in  situ hybridi-
zation (FISH) studies were performed according to the 
standard procedures [22]. A complete study required 
analysis of at least 15 metaphase cells. The FISH probes 

included RUNX1/RUNX1T1/t(8;21)(q22;q22), CEBP/
MYH11/inv(16)(p13.1q22) /t(16;16) (p13.1;q22); PML/
RARA /t(15;17)(q22;q12); BCR/ABL1/t(9;22)(q34;q11.2), 
and KMT2A(MLL)/11q23 rearrangement (Abbott 
Molecular, Abbott Park, Illinois). A complex karyo-
type was defined as three or more chromosomal aber-
rations in the absence of the WHO recurrent AML 
genetic aberrations of t(8;21)(q22;q22), inv(16)(p13.1q22) 
/t(16;16) (p13.1;q22); t(15;17)(q22;q12), t(6;9)(p23;q34.1), 
KMT2A(MLL)/11q23 rearrangement, and t(9;22)
(q34;q11.2) [19]. An unbalanced aberration involving two 
or more chromosomes was counted as two abnormali-
ties [23, 24]. Down syndrome AML was excluded from 
the study. CK patients with -5/5q-, -7/7q-, and/or 17p 
aberrations were assigned as typical CK while the others 
were deemed as atypical CK. Karyotype designation was 
in accordance with the International System for Human 
Cytogenomic Nomenclature 2016 [25].

Risk classification was following the modified US 
Children Oncology Group (COG) AML risk strati-
fication scheme: low risk features included t(8;21)
(q22;q22), inv(16)(p13.1q22) /t(16;16) (p13.1;q22); 
t(15;17)(q22;q12), mutated NPM1,and/or biallelic 
mutated CEBPA; high-risk factors were -7, -5/5q-, t(6;9)
(p23;q34), t(9;22)(q34;q11.2), inv(3)(q21q26.2)/t(3;3)
(q21;q26.2), KMT2A/11q23 rearrangement except t(9;11)
(p21.3;q23.3), and FLT3-ITD; and intermediate-risk fea-
tures were those without the high or low-risk features 
[20, 23, 26].

Gene mutation analysis
Total RNA was extracted from bone marrow samples 
using the Tiangen RNAprep Pure Blood Kit (Tiangen 
Biotech, Beijing, China), and used as the template for 
cDNA synthesis with the Reverse Transcription System 
(Promega, Fitchburg, WI). DNA fragments covering the 
mutational hotspots were polymerase chain reaction 
(PCR) amplified from cDNA following the conditions 
previous described [27–32]. The PCR products were ana-
lyzed by Sanger sequencing, and the PCR products con-
taining mutations were repeated at least once to confirm 
the presence of the identified mutations. Some mutant 
PCR products were subcloned into the pBackZero-T 
Vector (TaKaRa Biotechnology Co., Dalian, China) for 
further sequencing. PolyPhen and SIFT programs as 
well as COSMIC database (release v89, 15th May 2019) 
were employed to predict the pathogenicity of variants 
[33, 34]. Gene mutation hotspots analyzed in this study 
included FLT3 (exons 14–15), NPM1 (exon 12), WT1 
(exons 7 and 9), NRAS (exons 1–2), KRAS (exons 1–2), 
IDH1 (exon 4), IDH2 (exon 4), KIT (exons 8, 10, 11 and 
17), CEBPA (exon 1), CCDN1 (exon 5), ASXL2 (exons 
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11–12), DHX15 (exon 3), GATA2 (exons 4–6), and 
DNMT3A (exon 2) [27–32].

Statistical analysis
Patient characteristics were compared using chi-square 
(χ2), Fisher’s exact, or Mann–Whitney U test, as appro-
priate. Complete remission (CR) was defined as bone 
marrow with less than 5% blasts and evidence of regen-
eration of normal hematopoietic cells. Overall survival 
(OS) was calculated from the date of diagnosis to death 
or last contact. Event-free survival (EFS) was the time 
between diagnosis and occurrence of the first event 
(i.e., failure to achieve complete remission, relapse, sec-
ondary tumor, or death of any cause). OS and EFS were 
estimated using the Kaplan–Meier analysis, and the dif-
ferences were compared using the log-rank test. A p 
value of ≤ 0.05 (two-sided) was considered statistical sig-
nificance. The analyses were performed with SPSS soft-
ware package v17.0 (SPSS, Inc., Chicago, Illinois).

Results
Childhood CK‑AML cytogenetics
Of 284 patients in the cohort, 225 (79.2%) cases showed 
clonal cytogenetic aberrations. One hundred forty-three 
were classified as low-risk, 109 intermediate-risk, and 32 
high-risk. Thirty-four (12.0%) patients met the criteria for 
CK (Additional file 1: Table 1). Among the patients with 
CK-AML, seven were less than 2 years old and 27 were 

at two years or older, resulting in CK incidences of 20.6% 
and 79.4% in children younger than two years and older 
than two years, respectively. Nine CK cases were typical 
CK and 25 atypical CK. The average number of aberra-
tions in the typical and atypical CK subgroups were 6 
[4–17] and 4 [3–13], respectively, and the difference was 
statistically significant (p = 0.025). Sixteen CK cases har-
bored three to four abnormalities and the others had five 
or more aberrations. Multiple cytogenetic clones defined 
as two or more clones were observed in 17 (50%) patients 
with CK-AML.

Clinical and gene mutation characteristics of childhood 
CK‑AML
There were no differences in clinical features between 
the CK and intermediate-risk groups except that 
patients with CK-AML tended to be younger (2.5 
yrs. vs. 5.0 yrs., p = 0.031) (Table  1). Compared with 
children with CK-AML, patients with intermedi-
ate-risk features had a higher NRAS mutation inci-
dence although the difference was not statistically 
significant (3% vs. 18%; p = 0.079) (Table  1). Among 
the patients with CK-AML, WT1 gene had the high-
est mutational incidence (13%) followed by CEBPA, 
FLT3/ITD, and IDH1 genes (6.0% each), and none 
was observed in NPM1, KIT, CCND1, IDH2, ASXL2, 
DHX15, and DNMT3A genes (Table  1). Patients with 
atypical CK-AML were likely to have higher blasts in 

Table 1 Comparison of clinical and molecular features of childhood intermediate-risk AML and CK-AML

† Genes include ASXL2, DHX15, CCND1, NPM1, and DNMT3A. CK denotes complex karypotype, and NK: normal karyotype, n.s.: no statistical difference

CK (n = 34) Intermediate‑risk (n = 82) p

Age (years) 2.5 (0.3–15.2) 5.0 (0.3–14.8) 0.031

Male/female 19/15 43/39 n.s

WBC  (1012/L) 21.83 (0.88–249.96) 20.02 (0.85–389.96) n.s

% blast in bone marrow 71 (20–95) 69 (16–97) n.s

Gene mutations [% (no./total)]

  CEBPA 6 (2/33) 14 (10/74) n.s

  FLT3/ITD 6 (2/33) 0 (0/79) n.s

   WT1 13 (4/32) 13 (9/68) n.s

   IDH1 6 (2/33) 4 (3/74) n.s

   KRAS 3 (1/33) 5 (4/76) n.s

   NRAS 3 (1/33) 18 (14/80) 0.079

   KIT 0 (0/33) 5 (4/76) n.s

   IDH2 0 (0/33) 4 (3/78) n.s

   GATA2 3 (1/31) 1 (1/69) n.s

    Others† 0 0

Outcomes (%)

   Complete remission rate 60 (12/20) 83 (48/58) 0.076

   Relapse 58 (7/12) 38 (18/48) n.s

   Relapse and failure to CR 60 (12/20) 48 (28/58) n.s
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bone marrow than those with typical CK-AML (73% 
vs. 68%; p = 0.08) while there were no differences in 
other clinical and molecular features between the 
two groups (Additional file  2: Table  2). Similar clini-
cal and mutational features were observed between 
CK with ≤ 4 and ≥ 5 aberrations (Additional file  3: 
Table  3). CK-AML patients with a single clone were 
younger (2.0 vs. 3.0 yrs., p < 0.001) and had a higher 
percentage of blasts in marrow (70% vs. 68%; p < 0.001) 
compared to those with two or more clones, but no 
difference in gene mutational frequencies (Table  2). 
Of thirteen common AML genes examined in the CK-
AML cohort, concomitant mutants were observed 
only in one patient (CEBPA and NKRS) (Fig. 1).

Impact of CK on childhood AML outcomes
Outcome information was available from 60 patients in 
the intermediate-risk group and 20 patients in the CK 
group. The median follow-up was 15  months (range 
1–91  months). Compared to those with intermediate-
risk AML, patients with CK-AML seemed less likely 
to reach complete remission (60% vs. 83%; p = 0.076) 
(Table  1), and had a trend for shorter survivals (5-year 
OS: 26.7 ± 10.6% vs. 37.5 ± 8.6%, p = 0.053; 5-year EFS: 
26.7 ± 10.6% vs. 38.8 ± 8.6%, p = 0.039) (Fig. 2). Children 
with typical CK-AML showed a trend for decreased OS 
(5-year OS: 0 vs. 33 ± 12.7%.; p = 0.084) but no differ-
ence in EFS (5-year EFS: 0 vs. 33.0 ± 12.7%; p = 0.14) 
compared with those with atypical CK-AML. Patients 

Table 2 Comparison of clinical and genetic features of childhood CK-AML with a single and multiple clones

† Genes include MPN1, KIT, CCND1, CCND2, ASXL2, DHX15, DNMT3A, and IDH2. CK denotes complex karypotype; n.s.: no statistical difference

CK (single clone) (n = 17) CK (≥ 2 clones) (n = 17) p

Age (years) 2.0 (0.4–7.0) 3.0 (0.3–15.2) < 0.001

Male/female 7/11 11/6 n.s

WBC  (1012/L) 23.86 (0.88–152.86) 25.75 (1.33–249.96) n.s

% blast in bone marrow 70 (20–93) 68 (31–95) < 0.001

Gene mutations [%; (no./total)]

  CEBPA 7 (1/15) 6 (1/17) n.s

  FLT3/ITD 14 (2/15) 0 (0/17) n.s

  WT1 27 (4/15) 6 (1/17) n.s

  IDH1 0 (0/16) 12 (2/17) n.s

  K-RAS 0 (0/15) 6 (1/17) n.s

  N-RAS 0 (0/15) 6 (1/17) n.s

  GATA2 7 (1/15) 0 (0/16) n.s

  Other  genes† 0 0

Outcomes (%)

  Complete remission rate 67 (6/9) 67 (6/9) n.s

  Relapse 50 (3/6) 50 (3/6) n.s

  Relapse and failure to CR 67 (6/9) 89 (8/11) n.s

Fig. 1 Distribution of gene mutations in CK-AML. Each column represents an individual case, and each row represents a single gene. Black denotes 
mutants; dark grey for wild-types; and light grey for mutation status not determined. CK: complex karyotype
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Fig. 2 Comparison of overall survivals (OS) and even-free survivals (EFS) of AML with complex karyotype (CK) and intermediate-risk (a and b), 
typical and atypical CK (c and d), CK with ≤ 4 and ≥ 5 aberrations (e and f), and CK with a single and multiple clones (g and h). CK: complex 
karyotype; abn: abnormality
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with ≥ 5 chromosome aberrations had an inferior OS and 
EFS (5-year OS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.040; 
5-year EFS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.048) than 
ones with ≤ 4 aberrations, indicating a positive correla-
tion between the number of chromosomal aberrations 
and worsen survivals. No differences in CR and relapse 
rates, as well as survivals, were observed between CK 
with a single and multiple clones (5-year OS: 18.9 ± 15.3% 
vs. 41.7 ± 17.3%; p = 0.92; 5-year EFS: 18.5 ± 16.1% vs. 
33.3 ± 15.7%; p = 0.52) (Table 2 and Fig. 2). Outcome data 
were available on three CK-AML cases with mutant WT1 
gene, two relapsed, one died in 8 months and the other in 
26 months. Another child was still alive at the last con-
tact of six and half years after diagnosis.

Discussion
In the past decades significant progresses have been 
made in treating childhood AML. But one-third of 
children with AML relapse and do not survive beyond 
5 years [1, 2]. Cytogenetics is a major factor in AML risk 
classification which is important in guiding risk-adapted 
treatment [3, 4]. So far our knowledge of AML cytoge-
netics has been primarily derived from studies on adult 
AML and little is known about features and clinical cor-
relation of CK in childhood AML, mainly owing to the 
rarity of the disease [18–20].

The prevalence of CK-AML in our study cohort, 12.0%, 
is comparable to 9.5% reported in another AML study in 
Chinese children [35]. In a study of children with AML in 
the United Kingdom, Harrison and colleagues observed 
a high CK incidence of 17.7%, but the study included CK 
with the WHO recurrent AML genetic aberrations such 
as t(8;21) and inv(16)(13). A relatively high CK preva-
lence, 18.5%, was also documented in a small study on 
Korean children [36]. In another study of 642 European 
children with AML, Rasche and colleagues reported a 
CK frequency of 9% [20]. In the present study, we also 
observed a distinct age-associated CK distribution with 
a higher incidence in toddlers than in young children and 
adolescents (20.0% in < 2 yrs. vs. 10.8% in ≥ 2 yrs). This is 
in agreement with the observation from a study of Ger-
man children which showed similar distribution between 
the two age groups [37].

CK is considered an adverse risk factor in adult AML 
but its role in childhood AML remains inconclusive [3]. 
In our cohort most children with CK-AML reached CR, 
which is in line with the findings from other studies [20, 
38, 39], but had shorter survivals compared with those 
with intermediate-risk features, demonstrating that CK 
is an adverse risk factor in childhood AML. Bager et al. 
reported reduced OS and EFS in children with CK-AML 
than those with non-CK-AML [18]. In their study, the 
comparator group, children with non-CK, also included 

ones with the t(8;21) and inv(16) which are associated 
with favorable outcomes. Therefore, it can’t definitively 
distinguish whether the improved survivals observed in 
non-CK group were due to the presence of the favorable 
cytogenetics in the comparator group or reduced sur-
vivals in the CK group were due to the worse effect of 
CK on AML than intermediate-risk cytogenetics in the 
comparator group. In another study of 59 children with 
CK-AML, Rasche and colleagues found no difference in 
survivals between children with CK-AML and those with 
either intermediate or low-risk features [20].

In adult CK-AML, shorter survival and a higher relapse 
rate have been associated with typical CK compared 
with atypical CK [19, 40]. We found no difference in EFS 
between typical CK and atypical CK groups among our 
patients but OS tended to be reduced in the typical CK-
AML group. In a previous study of British children with 
CK-AML, Grimwade and colleagues described compara-
ble outcomes between typical and atypical CK-AML [13]. 
In that study, the CK cohort also included the known 
favorable cytogenetics of t(8;21) and inv(16) which could 
influence the outcomes in either or both subgroups and 
thus, might be a confounding factor in assessing the 
impact of typical and atypical CK on AML outcomes 
[13]. Additional studies are necessary to further assess 
whether typical and atypical AML are two distinct dis-
ease entities with different outcomes in childhood AML. 
Furthermore, our study reveals CK with ≥ 5 aberrations 
is associated with shorter survivals than CK with ≤ 4 
aberrations, suggesting a correlation of a higher number 
of chromosomal abnormalities with a worse prognosis. A 
similar relationship was also observed in childhood CK-
AML in the study of Rasche and colleagues who reported 
significantly reduced OS among children with CK hav-
ing > 5 aberrations compared to those with ≤ 5 abnor-
malities but no difference in EFS between the two groups 
[20]. More recently, Bager et al. observed a longer 5-year 
OS in CK with five or more aberrations and comparable 
EFS compared to CK with 3–4 aberrations [18]. Future 
studies are warranted to determine whether complex 
karyotypes with five or more chromosomal aberration is 
associated with worse outcome in childhood CK-AML.

In the present study, there were considerable number 
of CK cases harboring more than one cytogenetic clone 
but no differences in outcomes between ones with a sin-
gle and multiple clones. Recent mutational studies using 
next-generation sequencing demonstrate that mutations 
at diagnosis play a critical role in leukemogenesis but 
mutational evolution during disease course is also impor-
tant in influencing outcomes. These observations under-
score the importance of continuous genetic profiling 
throughout the disease course in guiding optimal therapy 
to improve outcomes [41, 42].
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Thus far, there is limited information on mutational 
profile of CK-AML and no mutational profiling of child-
hood CK-AML has been reported in the literature [19]. 
The results from our study show that atypical CK is 
more common than typical CK in childhood AML com-
pared to high frequency of typical CK than atypical CK 
reported in adults [19, 40, 43]. Analysis of more than a 
dozen of common AML genes examined in our pediat-
ric AML cohort showed that mutant incidences were 
low and concomitant mutants were rare. In a study of 81 
genes in adult CK-AML, Mrozek and colleagues reported 
an average of two mutants per case [19]. Considering the 
fact that mutational frequencies in AML increase with 
aging, our results along with others demonstrate that 
molecular aberrations are uncommon in CK-AML [37]. 
Although the mutated FLT3/ITD and IDH1 gene inci-
dences in our childhood CK-AML cohort were compa-
rable to those observed in adult counterparts, mutant 
WT1 and CEBPA gene incidences were higher in our 
cohort than adult patients (WT1: 13.0% vs. 2.9%; CEBPA: 
6.0% vs. 1.5%) [19]. Of three CK-AML patients carrying 
WT1 gene mutation with outcome information available, 
two relapsed and died at 8 and 26 months, respectively, 
after diagnosis. These were similar to the observations 
reported by others that mutant WT1 gene is associated 
with decreased survivals and high relapse [44, 45]. Finally, 
TP53 gene aberrations have been reported in 40%-50% of 
adult patients with CK-AML [19, 46]. TP53 mutational 
analysis was not performed in the present study, and we 
only observed one CK-AML case (2.9%) with a 17p13.1 
deletion by cytogenetic analysis. Taken together, our 
results show a difference in cytogenetic and mutational 
profiles between childhood and adult CK-AML, which is 
in accordance with findings in other AML subtypes [37].

Differences in results between our study and others are 
likely attributed to variation in the composition of study 
cohorts including the number of patients, age, treatment 
modalities, criteria for complex karyotype (≥ 3 vs. ≥ 5 
aberrations), geographic locations, ethnic groups, meth-
ods used in mutation analysis, and the number of genes 
examined. Our results need to be validated by future 
studies of large cohorts of children with CK-AML.

Conclusions
To the best of our knowledge, no such studies have been 
reported in the literature and ours is the first in the 
Chinese population. Our results demonstrate for the 
first time that among Chinese children with CK-AML, 
atypical CK was more frequent than typical CK, muta-
tional incidences were low and concomitant mutants 
were uncommon. CK-AML had reduced EFS and OS 
compared with intermediate-risk AML, indicating CK 
as an adverse risk marker for childhood AML. Typical 

CK-AML tended to correlate with decreased OS com-
pared to atypical CK-AML. Moreover, CK-AML with 
five or more cytogenetic aberrations was associated with 
inferior survivals than CK with four or fewer abnormali-
ties, suggesting that the number of cytogenetic abnor-
malities in CK may influence outcome. Results from our 
study would inform refinement of risk stratification for 
childhood AML to improve outcomes.
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